ByteMLPerf是字节使用的一个基准套件,用于测量推理系统在各种部署场景中运行模型的速度。相比MLPerf,ByteMLPerf有如下特点:
ByteMLPerf 基准分为三个主要类别:推理(Inference)、训练(Training)和微观性能(Micro),每个类别针对 AI 加速器性能的不同方面:
Inference:此类别进一步细分为两个部分,以适应不同类型的模型:
Micro:Micro Perf侧重于评估特定操作或“运算”(如 Gemm、Softmax 和各种通信操作)的性能,这些操作是 AI 计算的基础。这种详细级别的测试对于了解加速器在更细致的操作层面的能力和限制至关重要。
Training:目前正在开发中的此类别旨在评估 AI 加速器在训练场景中的性能。它将提供关于加速器如何处理训练 AI 模型的计算密集过程的见解,这对于开发新的和更先进的 AI 系统至关重要。
希望评估和改进其 AI 加速器的供应商可以使用 ByteMLPerf 基准作为全面的指南。该基准不仅提供了性能和准确性评估的详细框架,还包括了 ASIC 硬件的编译器可用性和覆盖范围的考虑,确保了全面的评估方法。
目前支持的厂商Backend如下:
Vendor | SKU | Key Parameters | Inference(General Perf) | Inference(LLM Perf) |
---|---|---|---|---|
Intel | Xeon | - | - | - |
Stream Computing | STC P920 | Supported | - | |
Graphcore | Graphcore® C600 | Supported | - | |
Moffett-AI | Moffett-AI S30 | Supported | - | |
Habana | Gaudi2 | Supported | - |
ASF Statement on Compliance with US Export Regulations and Entity List